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Folding of the triangular lattice in a discrete three-dimensional space is investigated numerically. Such
“discrete folding” has come about through theoretical investigation, since Bowick and co-workers introduced
it as a simplified model for the crumpling of the phantom polymerized membranes. So far, it has been analyzed
with the hexagon approximation of the cluster variation mett©dM). However, the possible systematic
error of the approximation was not fully estimated; in fact, it has been known that the transfer-matrix calcu-
lation is limited in the tractable strip widths< 6. Aiming to surmount this limitation, we utilized the density-
matrix renormalization group. Thereby, we succeeded in treating strip widthslup2® which admit reliable
extrapolations to the thermodynamic limit. Our data indicate an onset of a discontinuous crumpling transition
with the latent heat substantially larger than the CVM estimate. It is even larger than the latent heat of the
planar(two-dimensionagl folding, as first noticed by the preceding CVM study. That is, contrary to our naive
expectation, the discontinuous character of the transition is even promoted by the enlargement of the
embedding-space dimensions. We also calculated the folding entropy, which appears to lie within the best
analytical bound obtained previously via combinatorics arguments.
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[. INTRODUCTION Because the embedding space is two-dimensional, this model
is referred to as planar foldin@in the theory, we consider an

Statistical mechanics of membranes is regarded as a natunstretchable sheet without self-avoidance. Hence, the model
ral extension of that of polymers. The interplay between thds regarded as a discretized version of the phantom polymer-
extended geometry and the thermal fluctuations has providéded membrane with infinite strain modyliOwing to this
even richer subjects, leading to a very active area of researdliscretization, the problem reduces to an Ising model; the
[1-3]. Depending on the fine details of microscopic interac-resultant spin model is, however, subjected to a constraint
tions, the behaviors of membranes are separated into a numtich makes the problem highly nontrivial. Nevertheless,
ber of subgroups: In the case where the constituent molewing to the discretization, we are able to resort to numerous
ecules are diffusive, the membrane cannot support a shedechniques developed in the studies of the spin models. Ac-
and the elasticity is governed only by the bending rigiditytually, both analytical (cluster variatiom and numerical
[4,5]. Such a membrane is called fluilipid) membrane, and (transfer matrix approaches have been utilized successfully
it is always crumpled irrespective of temperatures. On thd24,25. Thereby, it turned out that the crumpling transition is
contrary, provided that fixed intermolecular connectivity isdiscontinuous, and the discrete character of the transition is
formed via polymerization, the in-plane strain is subjected tamaintained even in the presence of a perturbation such as the
finite shear moduli. Such a membrane is called a polymersymmetry breaking fieldcoupling to the spin variablgs
ized (tethered membrane. Contrary to the fluid membrane, One may be tempted to ask how this conclusion is sensi-
the polymerized membrane is flattened macroscopically fotive to the enlargement of the embedding space dimensions.
sufficiently large rigidities, or equivalently at low tempera- It is conceivable that the transition disappears altogether or
tures[6]. (Hence, the crumpling transition separates the flathat the order of the transition changes. Motivated by such an
and the crumpled phasg3he flat phase is characterized by idea, Bowick and co-workers enlarged the embedding space
the long-range orientational order of the surface normals. Ito three dimensiong26—29. Correspondingly, the joint
is rather exceptional that for such a two-dimensional systemangles are now taken from four distinctive values; we will
continuous symmetry is broken spontaneously. To clarify thiexplain the details afterward. However, the enlargement of
issue, a good deal of analyses have been reported so faine configuration space overwhelms the computer-memory
However, there still remain controversies whether the crumspace in the diagonalization procedure of the transfer matrix.
pling transition belongs to a continuous transitji@a19 ora  The tractable strip widthk are limited within the sizé&. =6,
discontinuous one accompanying appreciable latent heathich might be rather insufficient to examine the possible
[20,217. systematic error of the cluster-variation approximation.

Meanwhile, a unique alternative approach to this problem In this paper, we surmount the limitation through resort-
was initiated by Kantor and Jéri[22], who formulated a ing to the density-matrix renormalization groyB0-33.
discretized version of the polymerized membrane. To be speFhis technique has proved to be successful even in the prob-
cific, they considered a triangular latti¢aetwork), whose lem of soft materials such as fluid membraig3,34. Tak-
joint angle 6 (relative angle between adjacent plaqueties ing the advantage that the technique allows us to treat very
taken from eitherd=x (no fold) or =0 (complete fold. large system sizes, we investigate the bulk properties of the
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discrete folding in detail. Our first-principles data indicate
that the crumpling transition is discontinuous, and the latent
heat is considerably larger than the cluster-variation estimate.
It is even larger than the latent heat of the planar folding, as
first noted by the cluster-variation-method stuy@r]. That

is, contrary to our naive expectation, the discontinuous char-
acter of the transition is even pronounced by the enlargement
of the embedding-space dimensions. We will also calculate
the folding entropy that has a close connection with a com-
binatorics problem in mathematics. Our result lies within the
best analytical bound obtained via combinatorics arguments (@)
[26].

The rest of this paper is organized as follows. In the next o Ol
section, we explicate the three-dimensional discrete folding. 20/ 91| o fowf-o-fope]--- 2.4 %l
The main goal is to set up an expression for the transfer- z - Zy |
matrix elemenf26]. In Sec. Ill, we present our scheme for & 14 Ao j=L-1
the diagonalization of the transfer matrix with the density- z 0° 01| -¢- o} - e - )
matrix renormalization group. A preliminary simulation re- z ZoLk
sult for a performance check is shown as well. In Sec. IV, we
perform extensive simulations. Our first-principles data are (b)
compared with the preceding cluster-variation res{®g.

The last section is devoted to the summary and discussions, F'C: 1- (&) We consider a discrete folding of the triangular lat-
tice embedded in the three-dimensional space. In order to specify

the fold angle, we place two types of Ising variables such asd

Op|-

Il. CONSTRUCTION OF THE TRANSFER MATRIX o; at each triangle rather than at each jggauge rulg26]). Hence,
FOR THE THREE-DIMENSIONAL DISCRETE hereafter, we consider a spin model defined on the ghedagonal
FOLDING [26] lattice. (b) A construction of the transfer matrix. The row-to-row

statistical weight yields the transfer-matrix element. The explicit

In this section, we set up an expression for the transfefomyla is given by Eq(1). The transfer matrix is diagonalized with
matrix Of the thl‘ee-dlmel’]SIOI’]a| dISCI’ete f0|dll[]@6] The the density_matrix renormalization group; see F|g 2.

transfer matrix is treated numerically in the succeeding sec-
tions. To begin with, we explain how the triangular lattice Let us summarize the points: We introduced statistical

(network is embedded onto the face-centered-cliic) lat- iy placed at each triangle. Therefore, the resultant spin

g(i:ni:er-:-sr}gnzcs IE:ct:Ige\}Nilfh \élst\lz\alﬁg dzrisng apna:jcfé?%hog dtrr;isthvrveheo'model is defined on the hexagon lattice, which is dual to the
P ' ?r?angular lattice. Hence, the transfer-matrix strip looks like

vertices are shearing the lattice points of the fcc lattice; se at drawn in Fig. (b). The row-to-row statistical weight

Fig. 3 of Ref.[26]. Because faces of these polygons are al : ) : )
equilateral triangles, a sheet of the triangular lattinet- (5.2} z) Yields the transfer-matrix element. However, ac

work) can be embedded onto the fcc lattice so as to Wra;‘}OrOIing to Ref.[26], th_e Ising variables are not qu_ite inde-
Bendent, and constraints should apply to the spins around

each hexagon. The transfer-matrix element is given by the

types of polygons, the relative fold anglésbetween the . . 4
P poyg g following form with extra factors that enforce the constraints

adjacent plaquettadriangleg are now taken from four pos- :
sibilities. That is, in addition to the cases of “no fold” [26]:
(6=m) and “complete fold"(#=0) that are already incorpo- L1
rated in the planar folding, we consider “acute fold” _ \/ _
[6=acos(1/3)] and “obtuse fold"[#=acos(-1/3)]. [Note Tzoliz o = (]1:[ U]V])exp( H), @
that we ignore the distortions of plaguettg¢siangles.
Hence, the limit of large strain moduli is assunmeegriori.]  with

The above discretization leads to an Ising-spin represen-
tation for the membrane folding. An efficient representation, U= 5(021—2 + 0+ o + o'éj_l + Uéj + o'éj+1m0d 3,0,
the so-called gauge rule, reads as folld@6]: We place two 2
types of Ising variables, namely; and z, at each triangle
(rather than each joiptsee Fig. 1a). The gauge rule states
that the sign change of the Ising variables with respect to

neighboring triangles specifies the joint angle: That is, pro- 2
yu_jed that the sign of thg variables change(sz_lzz_:—l),_ the V= 1T 8 (25j, Zoj-1, Zoj-2. 2y 1,2, 2y )MOd 2,0 (3)
joint angle is either acute or obtuse fold. Similarly,oifo, c=1

=-1 holds, the relative angle is either complete or obtuse
fold. Note that the above rules specify the joint angle unamHere, 8(m,n) denotes Kronecker’s symbol, ang is given
biguously. by
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Block states 1~m

——— < —
Block Block FIG. 2. Schematic drawing of the density-
matrix renormalization-group(DMRG) proce-
1 - dure. From the drawing, we see that through one
—all— ——— operation of DMRG, a “block” and the adjacent
sites(hexagon are renormalized altogether into a
——— : : new renormalized “block.” At this time, the num-
Block states 1~m Densny-matrllx ber of block states is retained within; see text.
renormalization group In this manner, we can diagonalize a large-scale
— transfer matrix through successive applications of
New block DMRG.
(renormalized)
—— S —
51 overwhelming matrix size. Here, we propose an alternative
alzy, ... \Z) => 5(1 -ZZ,1) gpp.roach through resorting to the density-matrix renormal-
i=1 ization group[30-33. The method allows us to treat large
[ system sizes. Our algorithm is standard, and we refer the
X8| o+ > o —cmod 3,0|. (4) reader to the text35] fo_r technical_details. In the fo_llowing,
-1 we outline the algorithm, placing an emphasis on the

) ) _ changes specific to this problem. We will also present a pre-
[These constraints, Eq&2) and (3), allow 96 spin configu-  |iminary simulation result in order to demonstrate the perfor-
rations around each hexagf?f]. In that sense, the resultant ygnce.
model is regarded as a 96-vertex mopidlhe Boltzmann The basic idea of the density-matrix renormalization
factor exgg—H) in Eq. (1) is due to the bending-energy cost; group is simple. It is a sort of computer-aided real-space
we set the temperatur€ as the unit of energy; namely  decimation procedure with the truncation error far improved
=1. As usual, the bending energy is given by the inner prodcompared with the previous ones. Sequential applications of
uct of the surface normals of adjacent triangles. Hence, thghe procedure enable us to reach very long system sizes. One
bending energy is given by the formula operation of the real-space-decimation procedure is depicted
1 in Fig. 2. Through the decimation, the block states and the
H=-0.5> K cosf=-0.5, -Kaoioi(1+2zz), (5) adjacent spin variableshexagon are renormalized alto-
(i) @ 3 gether into new block states. The number of states for a
with the bending rigidityK. Here, the summatioB,;, runs renormalized block is kept bounded withim the parameter

over all possible nearest-neighbor paijsaround each hexa- ][Poﬁ]ettshéhgi Selrr:]slfrleigznwri)trﬁzi'sIgir;ic:#togtztti{gga?rvsefgr(}gzen
gon. (The overall factor 0.5 is intended to reconcile the g 9

double counting. genvalues {w,} of a (local) density matrix[35]; this is an

The above completes the transfer-matrix construction fofSSential part of the density-matrix renormalization group
the discrete folding. The size of the matrix grows exponen{30]; and the name comes from this. _
tially in the form«16- with the system siz&; the definition This is a good position to address a few remarks regarding
of L is shown in Fig. 1b). Apparently, it is an involving task the changes specific to the present problem. First, in our
to diagonalize the matrix numerically; so far, the width ~simulation, in order to reduce the truncation error of the real-
=6 has been achieved with the conventional full-space decimation, we adopted the *finite-size methas].
diagonalization schemg26,28,29. Moreover, the open We managed three sweeps at least, and confirmed that a good
boundary condition must be imposed in order to release theonvergence is achieved in the sense that the error is negli-
constraints from the boundaries; otherwise, the constraintgible compared with the finite-size corrections. Secondly, we
are too restrictive. The boundary effect deteriorates the dathave applied a magnetic field of the strengtiH=2 at an
so that the data acquire severe finite-size corrections. In thend of the transfer-matrix strip. This trick was first utilized in
following section, we propose an alternative diagonalizatiorRef. [29], and it aims to split off the degeneracy caused by
scheme which enables us to treat large system sizes. the trivial fourfold symmetry(o=+1,z=+1) of the overall
membrane orientation.

We turn to a demonstration of the performance of the
scheme. In Fig. 3, we present the distribution of the statisti-
cal weights{w,} for the bending rigidityK =0.1, the number
of states kept for a blockn=15, and the system side=14.

As is mentioned in the preceding section, the diagonaliza¥Ve see that the statistical weight drops very rapidly. In fact,
tion of the transfer matrix1) is cumbersome because of its the 15th state exhibits very tiny statistical weighits~3

IIl. NUMERICAL SIMULATION ALGORITHM:
AN APPLICATION OF THE DENSITY-MATRIX
RENORMALIZATION GROUP TO THE

DISCRETE FOLDING
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FIG. 3. Distribution of the eigenvalugstatistical weights{w,} FIG. 4. We plotted the free enerdy as well as the internal

(a, integer index of the (local) density matrix[30-37 is shown.  energyk for the bending rigidityK. The simulation parameters for
The simulation parameters are chosen from the bending rigidity €ach symbol aré+)L=5 andm=5, (X)L=6 andm=5, and ()L

=0.1, the number of states kept for a blavk 15, and the system =7 andm=5. We see an abrupt change of the internal enégy
size L=14. We see thatv, drops very rapidly for larger. For ~ Which may indicate an onset of the crumpling transition. The dotted
instance, the states up to only¥ 15 cover the relevargsignifican) line denotes the relation K32 which describes the elastic energy
bases with appreciable statistical weights>3x 107 the dis- for a completely stretched membrane. Inset: Entr§jyplotted for
carded weight$a>m) indicate an amount of the truncation error. the bending rigidityK. In the largeK phase, the entropy appears to

In this manner, onlym selectedrelevanj bases are retained for a Vvanish. This result, again, indicates that the membrane is stretched
renormalized “block” as is shown in Fig. 2. completely in the flat phase.

X 1074, Hence, only 15 significant bases, for instance, arédursue this issue further in the next subsection. In the inset,
sufficient to attain a precision 0f3x 107% note that the ~We have plotted the entropy per unit c8lIFrom the plot, we
statistical weight of the discarded states, namejy > m), see that a large amount of entropy is released at the transition
indicates an amount of the truncation error. In our simulaoint. This fact shows that the membrane is flattened macro-
tion, we maintain, at mostn=20 bases for a renormalized Scopically in the largé< regime(flat phas¢ As a matter of
block, and thus our simulation result is “exact” in a practicalfact, it is to be noted that the entropy vanishes in the flat
sense. Of course, there are finite-size corrections that afhase; that is, the membrane undulations are frozen up

severer than the truncation error, and they are to be consi¢ompletely withstanding the thermal disturbances. In fact,
ered separately. the internal energy is well fitted by the formul&

=-0.%(3 cos 0=-3K/2; see the dotted line in Fig. 4. This
fact again shows that the surface normals of all plaquettes are
parallel to each othg®=0). This feature is quite reminiscent

In this section, we present the numerical results. We firsf the planar folding24]; see the Introduction. In this three-
survey overall features for a wide range of the bending rigid-dimensional case as well, the membrane is flattened com-
ity K. Guided by the findings, we perform large-scale simu-pletely in the largek phase. In the present case, however, the
lations, aiming to investigate the crumpling transition and theentropy release may be smeared out to some extent by the
folding entropy. enlargement of the embedding space dimensions. This issue
is also explored in the next subsection.

In the following, let us mention some technical remarks.
First, we explain a trick to evaluate the free eneFgyAl-

In Fig. 4, we plotted the internal enerdy and the free though the internal enerdgy is calculated straightforwardly,
energyF for a wide range of the bending rigiditg. BothE  the calculation ofF requires some care. As is well known,
and F are normalized so as to represent the one-unit-celihe total strip free energy is calculated with the transfer-
quantities. In order to evaluate reliably, we carried out a matrix diagonalization directly. However, because of the
trick, which we explain afterward. Technical information on presence of the boundaries, the data are deteriorated by the
the simulation parameters is listed in the figure captionboundary effect(On the other hand, the presence of bound-
From the figure, we see a clear signature of an onset of tharies is vital to the numerical calculation; see Seg.More-
crumpling transition at aroun#.~0.2. To be specific, we over, through sequential applications of the normalization,
see an abrupt change of the internal endegyand the dis- the total “width” of the strip becomes obscure. In fact, the
continuity is pronounced as the system sizés enlarged. degrees of freedom processed in the early stages of normal-
This tendency suggests that the singularity belongs to thization would be truncated out by the succeeding renormal-
first-order transition. Such a tendency was observed in thiations. In that sense, we should place a stress upon the
preceding full-diagonalization calculation study far<6  middle of the transfer-matrix strip, namely the middle hexa-
[28]. Such a discontinuous crumpling transition was pre-gon in Fig. 2. The middle hexagon retains the full degrees of
dicted by the cluster-variation analysis as welf], and we freedom(yet to be renormalizedand the boundary effect is

IV. NUMERICAL RESULTS

A. Preliminary survey and technical remarks
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FIG. 5. From the free-energy subtraction for those transfer- ! ! ! !

matrix strips shown in the above and Fig. 2, we extracted the bulk 0.18 0.185 0.19 0.195 0.2
contribution to the free energy corresponding to the middle hexagon K

of Fig. 2 (containing three unit cel)s FIG. 7. EntropyS is plotted for the bending rigidity)Kk. The

entropy right at the phase transition poky=0.1952) yields the
less influential. In order to extract the contribution from thejatent heaQ=0.3655); see text. The simulation parameters are the
middle part, we managed a subtraction for those free enegsame as those of Fig. Because of the hysteresis eff¢86], the
gies with different strip widths depicted in Figs. 2 and 5. Thecrumpled phase is kept stabilized throughout the parameter range
free-energy difference yields the bulk free energy containingshown above.
three unit cells. This trick is of particular importance in the
succeeding subsections, where we perform numerous renasummarized in the figure caption. As is found in the preced-
malizations. ing subsection, the excess free energy should vanish at the
Second, as was first noticed in R¢86], the density- crumpling transition point, because the free energy in the flat
matrix renormalization-group data exhibit a hysteresis effectphase obeys the formula K32. In other words, in the plot,
The hysteresis is due to the fact that the past information isve are just comparing the free energies beside the transition
encoded in the renormalized block. In the simulation prepoint. Moreover, from the figure, we observe that the slope
sented in Fig. 4, we have softened the bending rigitity of the excess free energy is finite at the transition point.
gradually. In this way, we succeeded in stabilizing the flatHence, the crumpling transition is indeed discontinuous.
phase.(Otherwise, one may not be able to realize the flat From the figure, we see that good convergence is
phase. Because the flat phase is quite peculiar in the senaghieved with respect to both(system sizeandm (number
that it bears zero entropy, it is very hard to reach such a staigf retained bases for a renormalized blpdk fact, the data
by annealing from the crumpled phastn the next section, almost overlap each other for the parametersnef 15 and
we will stabilize the crumpling phase instead, because we are=19. Hence, we estimate the transition point g
concerned with the crumpled state and the undulation precue0.1952). Our simulation result shows that the previous
sory of the transition point. cluster-variation estimat&.=0.185 48 is remarkably pre-
cise.
B. Crumpling transition Let us mention a technical remark. As is mentioned in the

In this subsection, we perform large-scale simulations@P0ve subsection, the density-matrix renormalization group
aiming to clarify the nature of the crumpling transition. In exhibits a hysteresis effect. Hence, upon increasing the bend-
Fig. 6, we plotted the “excess” free enerfy3/2K in the N9 rigidity gradually, we are able to retain the crumpling

vicinity of the transition point. The technical parameters arePha@se. Taking advantage of those features rather specific to
this particular problem and the methodology, we are able to

determine the crumpling transition very precisely in terms of

gob%? - . the excess free energy.

EO-OOS N i As mentioned above, our data depicted in Fig. 6 suggest
0.005 - - that the crumpling transition is discontinuous. In order to
-0.01 - 7 estimate the amount of the latent heat, in Fig. 7 we plotted
o L ] the entropyS in close vicinity of the transition poin{The
-0.025 |- . technical parameters are the same as those of Bigudie
0.03 5 . . , ] that the entropy at the transition point yields the latent heat,

035
0.18 0.185 0.19 0.195 0.2
K

because whole entropy is released at the crumpling transi-
tion. (Again, owing to the hysteresis effect, the crumpling
phase is kept stabilized throughout the parameter range

FIG. 6. “Excess” free energly+3K/2 is plotted for the bending
rigidity K. The simulation parameters for each symbol argl _ _
=19 andm=15, (X)L=24 andm=20, (+)L=24 andm=15, ()L  25Q=TAS=0.3685). ,
=29 andm=15, (M)L=24 andm=5, and(O)L =14 andm=15. The Ouir first-principles estimate of the latent heat may be in-
term -X/2 comes from the known exact free energy for the flattfiguing. First, the present estimate appears to be substan-
phase. Hence, at the crumpling transition point, the excess freially larger than that of the cluster-variation stu@¢y aq
energy should cancel out. In this way, we obtain an estimate for th&0.229=0.185 48<1.237 [27]. [Here, the contribution
transition point a.=0.1952). (Because of the hysteresis effect 1.237 comes from a “jump in the energy-like correlation
[36], the crumpled phase is kept stabilized throughout the parametdunction” [27]. Hence, multiplying it by the bending-rigidity
range shown above. modulusK;=0.185 48, we obtain the latent heat; see the for-

shown in the figure.In this way, we estimate the latent heat
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mula for the bending energgh).] As a matter of fact, our 0.378 L ' ' ' ' ' ' ]
data of Fig. 7 indicate that the entropy is kept almost un- '

changed even in the vicinity of the transition point. This fact & 0376 L X X ]
tells us that the phase transition occurs abruptly without any Il ™ %

precursor.[JAImost all “folding entropy” S(K=0), which is o 0.374 - )
calculated in the next subsection, is released at the transitiol +

point actually] We think that the constraints, Eq&) and 0372 L * i
(3), give rise to such a notable suppression of the undulatior

precursory of the crumpling transition. In this sense, it is 037 L i
suspected that the constraints are not fully appreciated by th

single-hexagon-cluster approximation in the preceding work.  g3gg | i
Second, nevertheless, it is still counterintuitive that the latent *
heat is even larger than that of the planar foldiQgy g 0.365 L ! ! ! L Wt
=0.11(=0.1013x1.047 obtained by the cluster-variation 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
method[25,27. Naively, one would expect that the latent- 1/L2

heat release is smeared out by the enlargement of the embed-

ding spatial dimensions. Contrary to such a naive expecta- FIG. 8. Folding entropy§(K=0) is plotted for 112 The simu-
tion, our data indicate that the discontinuous nature of théation parameter for each symbol is)m=10, (x)m=15, and
transition is enhanced by the enlargement of the embedding)M=20- Taking an extrapolation to the thermodynamic limit
spatial dimensions. The tendency observed in our simulation”*: W€ obtain an estimatg=0.3782). Our estimate lies within

data supports the claim that the crumpling transition is dis{"® Pest analytic bounfP6]; see text.

continuous[20,21. The method allows us to treat large system sizes. In fact, we
succeeded in diagonalizing the transfer matrix with the strip
C. Folding entropy widths up toL=29. The system sizes treated in the present
. ) ) study are far improved, compared to the past limitation of
In this subsection, we calculate the folding entropy,| =g Taking the advantage, we could take reliable extrapo-
namely the entropy in the absence of the bending rigidityations to the thermodynamic limit; see Fig. 8, for instance.
(K=0). This quantity has a close connection with mathemat\oregver, from the figure, we confirm that the
ics; in the absence of the elastic term, the thermodynamicgenormalization-grouptruncation error is fairly negligible,
reduces to a pure entropic problem regarding the assessment -4, Actually, the truncation error is far smaller than the
of the volume in the configuration space. Hence, a combinafinite-size corrections, and it is controlled systematically by
torics argument applies. As a matter of fact, in the case of thegye parametem; see Fig. 3 as well.
planar folding, the folding entrop$,, is obtained exactly in Encouraged by these achievements, we turned to the
the context of the coloring problef®3,37,38, namelyS,y  analyses of the crumpling transition and the folding entropy.
=In g With Gp=+37T(1/3)%2/2=1.208 72. As for the Here, we also aimed to examine the preceding analytical
three-dimensional discrete folding, an exact bound 1.43Greatment29] based on the cluster-variation approximation;
<Q3=1.589 has been knowrj26], namely 0.365S the approximation has been known to be reliable in the case
<0.463.[We see that the effective degrees of freedom pebf the planar folding[25], whereas it remained unclear
unit cell are reduced considerably owing to the constraintsvhether it is validated for the three-dimensional folding. Per-
(2) and (3).] Both cluster variatiorg=1.428 05[27,29 and  forming large-scale simulations, we estimated the crumpling
numerical estimateg=1.431) [26] lie slightly out of the  transition point K,=0.1952) and the latent heatQ
analytic bound. It may be thus desirable to make an assess0.3655); see Figs. 6 and 7. Concerniig, the numerical
ment of the folding entropy with the present first-principlesresult is in good agreement with the cluster-variation esti-
simulation scheme. mateK.=0.185 48. As for the latent heat, however, our simu-
In Fig. 8, we plotted the entropg at K=0 against 1L%.  |ation result appears to be substantially larger than the pre-
The simulation parameters are summarized in the figure cagtiction by the cluster-variation metha@cy 33=0.229. Our
tion. From the figure, we see that a good convergence ifyst-principles data suggest that the constraints, Ejsand
achieved with respect to bothandm. Thereby, we estimate (3), were not fu||y appreciated by tl‘(ging|e-hexagon clus-
the folding entropy in the thermodynamics limit &  ter) approximation in the preceding study. Namely, in reality,
=0.3782). Our estimate lies within the aforementioned ana-the undulation precursory of the crumpling transition is sup-
lytic bound actually. Remarkably enough, it is close to thepressed considerably by the constraints. As a matter of fact,
lower bound(4% erroy, suggesting that the argume@6]  the latent heat in the three-dimensional folding is even larger
setting the lower bound is indeed capturing the essentighan that of the planar folding, as first noted by the cluster-

mechanism for the folding entropy. variation study[27]. This fact might be quite counterintui-
tive, because one expects that the entropy release should be
V. SUMMARY AND DISCUSSIONS smeared out by the embedding-space enlargement. Our first-

principles simulation shows that such a naive expectation
We have investigated the three-dimensional discrete foldeoes not hold, and in reality, the discontinuous nature of the
ing by means of the density-matrix renormalization group.crumpling transition is even promoted by the embedding-
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space enlargemenfActually, almost all folding entropy erron. Hence, it is suggested that the analytical argument
S(K=0) is released abruptly at the transition pgjrin this  leading to this lower bound is capturing the essence of the
sense, the tendency observed in our simulation data suppoffi@ding mechanism.
the claim that the crumpling transition is discontinuous Our first-principles simulation reveals that the discontinu-
[20,21. ous character of the transition is promoted by the enlarge-
Let us turn to addressing the entropy in the absence of theent of the embedding-space dimensions. Possibly, the con-
bending rigidity K=0. This quantity is often referred to as straints, Eqgs.(2) and (3), give rise to such a notable
the folding entropy, and it has a close connection with adiscontinuity. Hence, it would be of considerable interest to
combinatorics problem in mathematif3,37,38; note that release the constraint somehow, and see how the nature of
because oK=0, the thermodynamics is governed solely bythe transition changes. The constraint release, however, re-
the entropy(configuration-space volurmeln Ref.[26], an  sults in a severe increase of the nonzero elements of the
analytic bound 0.36% S<0.463 was derived via ingenious transfer matrix, and is thus computationally demanding. This
combinatorics arguments. The preceding resi@d%29 are, problem will be addressed in future study.
however, slightly out of this bound. We performed extensive
simulation for the folding entropy with the elastic constant
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