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Folding of the triangular lattice in a discrete three-dimensional space is investigated numerically. Such
“discrete folding” has come about through theoretical investigation, since Bowick and co-workers introduced
it as a simplified model for the crumpling of the phantom polymerized membranes. So far, it has been analyzed
with the hexagon approximation of the cluster variation method(CVM). However, the possible systematic
error of the approximation was not fully estimated; in fact, it has been known that the transfer-matrix calcu-
lation is limited in the tractable strip widthsLø6. Aiming to surmount this limitation, we utilized the density-
matrix renormalization group. Thereby, we succeeded in treating strip widths up toL=29 which admit reliable
extrapolations to the thermodynamic limit. Our data indicate an onset of a discontinuous crumpling transition
with the latent heat substantially larger than the CVM estimate. It is even larger than the latent heat of the
planar(two-dimensional) folding, as first noticed by the preceding CVM study. That is, contrary to our naive
expectation, the discontinuous character of the transition is even promoted by the enlargement of the
embedding-space dimensions. We also calculated the folding entropy, which appears to lie within the best
analytical bound obtained previously via combinatorics arguments.
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I. INTRODUCTION

Statistical mechanics of membranes is regarded as a natu-
ral extension of that of polymers. The interplay between the
extended geometry and the thermal fluctuations has provided
even richer subjects, leading to a very active area of research
[1–3]. Depending on the fine details of microscopic interac-
tions, the behaviors of membranes are separated into a num-
ber of subgroups: In the case where the constituent mol-
ecules are diffusive, the membrane cannot support a shear,
and the elasticity is governed only by the bending rigidity
[4,5]. Such a membrane is called fluid(lipid) membrane, and
it is always crumpled irrespective of temperatures. On the
contrary, provided that fixed intermolecular connectivity is
formed via polymerization, the in-plane strain is subjected to
finite shear moduli. Such a membrane is called a polymer-
ized (tethered) membrane. Contrary to the fluid membrane,
the polymerized membrane is flattened macroscopically for
sufficiently large rigidities, or equivalently at low tempera-
tures[6]. (Hence, the crumpling transition separates the flat
and the crumpled phases.) The flat phase is characterized by
the long-range orientational order of the surface normals. It
is rather exceptional that for such a two-dimensional system,
continuous symmetry is broken spontaneously. To clarify this
issue, a good deal of analyses have been reported so far.
However, there still remain controversies whether the crum-
pling transition belongs to a continuous transition[7–19] or a
discontinuous one accompanying appreciable latent heat
[20,21].

Meanwhile, a unique alternative approach to this problem
was initiated by Kantor and Jarić [22], who formulated a
discretized version of the polymerized membrane. To be spe-
cific, they considered a triangular lattice(network), whose
joint angleu (relative angle between adjacent plaquettes) is
taken from eitheru=p (no fold) or u=0 (complete fold).

Because the embedding space is two-dimensional, this model
is referred to as planar folding.(In the theory, we consider an
unstretchable sheet without self-avoidance. Hence, the model
is regarded as a discretized version of the phantom polymer-
ized membrane with infinite strain moduli.) Owing to this
discretization, the problem reduces to an Ising model; the
resultant spin model is, however, subjected to a constraint
which makes the problem highly nontrivial. Nevertheless,
owing to the discretization, we are able to resort to numerous
techniques developed in the studies of the spin models. Ac-
tually, both analytical (cluster variation) and numerical
(transfer matrix) approaches have been utilized successfully
[24,25]. Thereby, it turned out that the crumpling transition is
discontinuous, and the discrete character of the transition is
maintained even in the presence of a perturbation such as the
symmetry breaking field(coupling to the spin variables).

One may be tempted to ask how this conclusion is sensi-
tive to the enlargement of the embedding space dimensions.
It is conceivable that the transition disappears altogether or
that the order of the transition changes. Motivated by such an
idea, Bowick and co-workers enlarged the embedding space
to three dimensions[26–29]. Correspondingly, the joint
angles are now taken from four distinctive values; we will
explain the details afterward. However, the enlargement of
the configuration space overwhelms the computer-memory
space in the diagonalization procedure of the transfer matrix.
The tractable strip widthsL are limited within the sizeL=6,
which might be rather insufficient to examine the possible
systematic error of the cluster-variation approximation.

In this paper, we surmount the limitation through resort-
ing to the density-matrix renormalization group[30–32].
This technique has proved to be successful even in the prob-
lem of soft materials such as fluid membranes[33,34]. Tak-
ing the advantage that the technique allows us to treat very
large system sizes, we investigate the bulk properties of the
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discrete folding in detail. Our first-principles data indicate
that the crumpling transition is discontinuous, and the latent
heat is considerably larger than the cluster-variation estimate.
It is even larger than the latent heat of the planar folding, as
first noted by the cluster-variation-method study[27]. That
is, contrary to our naive expectation, the discontinuous char-
acter of the transition is even pronounced by the enlargement
of the embedding-space dimensions. We will also calculate
the folding entropy that has a close connection with a com-
binatorics problem in mathematics. Our result lies within the
best analytical bound obtained via combinatorics arguments
[26].

The rest of this paper is organized as follows. In the next
section, we explicate the three-dimensional discrete folding.
The main goal is to set up an expression for the transfer-
matrix element[26]. In Sec. III, we present our scheme for
the diagonalization of the transfer matrix with the density-
matrix renormalization group. A preliminary simulation re-
sult for a performance check is shown as well. In Sec. IV, we
perform extensive simulations. Our first-principles data are
compared with the preceding cluster-variation results[27].
The last section is devoted to the summary and discussions.

II. CONSTRUCTION OF THE TRANSFER MATRIX
FOR THE THREE-DIMENSIONAL DISCRETE

FOLDING [26]

In this section, we set up an expression for the transfer
matrix of the three-dimensional discrete folding[26]. The
transfer matrix is treated numerically in the succeeding sec-
tions. To begin with, we explain how the triangular lattice
(network) is embedded onto the face-centered-cubic(fcc) lat-
tice: The fcc lattice is viewed as a packing of the three-
dimensional space with octahedrons and tetrahedrons, whose
vertices are shearing the lattice points of the fcc lattice; see
Fig. 3 of Ref.[26]. Because faces of these polygons are all
equilateral triangles, a sheet of the triangular lattice(net-
work) can be embedded onto the fcc lattice so as to wrap
these polygons in arbitrary ways. Because there are two
types of polygons, the relative fold anglesu between the
adjacent plaquettes(triangles) are now taken from four pos-
sibilities. That is, in addition to the cases of “no fold”
su=pd and “complete fold”su=0d that are already incorpo-
rated in the planar folding, we consider “acute fold”
fu=acoss1/3dg and “obtuse fold”fu=acoss−1/3dg. [Note
that we ignore the distortions of plaquettes(triangles).
Hence, the limit of large strain moduli is assumeda priori.]

The above discretization leads to an Ising-spin represen-
tation for the membrane folding. An efficient representation,
the so-called gauge rule, reads as follows[26]: We place two
types of Ising variables, namelysi and zi, at each triangle
(rather than each joint); see Fig. 1(a). The gauge rule states
that the sign change of the Ising variables with respect to
neighboring triangles specifies the joint angle: That is, pro-
vided that the sign of thezi variables changessz1z2=−1d, the
joint angle is either acute or obtuse fold. Similarly, ifs1s2
=−1 holds, the relative angle is either complete or obtuse
fold. Note that the above rules specify the joint angle unam-
biguously.

Let us summarize the points: We introduced statistical
variables placed at each triangle. Therefore, the resultant spin
model is defined on the hexagon lattice, which is dual to the
triangular lattice. Hence, the transfer-matrix strip looks like
that drawn in Fig. 1(b). The row-to-row statistical weight
Thsi,zij,hsi8,zi8j yields the transfer-matrix element. However, ac-
cording to Ref.[26], the Ising variables are not quite inde-
pendent, and constraints should apply to the spins around
each hexagon. The transfer-matrix element is given by the
following form with extra factors that enforce the constraints
[26]:

Thz,sj,hz8,s8j = Sp
j=1

L−1

UjVjDexps− Hd, s1d

with

Uj = dss2j−2 + s2j−1 + s2j + s2j−18 + s2j8 + s2j+18 mod 3,0d,

s2d

and

Vj = p
c=1

2

d„acsz2j,z2j−1,z2j−2,z2j−18 ,z2j8 ,z2j+18 dmod 2,0…. s3d

Here,dsm,nd denotes Kronecker’s symbol, andac is given
by

FIG. 1. (a) We consider a discrete folding of the triangular lat-
tice embedded in the three-dimensional space. In order to specify
the fold angle, we place two types of Ising variables such aszi and
si at each triangle rather than at each joint(gauge rule[26]). Hence,
hereafter, we consider a spin model defined on the dual(hexagonal)
lattice. (b) A construction of the transfer matrix. The row-to-row
statistical weight yields the transfer-matrix element. The explicit
formula is given by Eq.(1). The transfer matrix is diagonalized with
the density-matrix renormalization group; see Fig. 2.

YOSHIHIRO NISHIYAMA PHYSICAL REVIEW E 70, 016101(2004)

016101-2



acsz1, . . . ,z6d = o
i=1

6
1

2
s1 − zizi+1d

3dSc0 + o
j=1

i

si − c mod 3,0D . s4d

[These constraints, Eqs.(2) and (3), allow 96 spin configu-
rations around each hexagon[26]. In that sense, the resultant
model is regarded as a 96-vertex model.] The Boltzmann
factor exps−Hd in Eq. (1) is due to the bending-energy cost;
we set the temperatureT as the unit of energy; namelyT
=1. As usual, the bending energy is given by the inner prod-
uct of the surface normals of adjacent triangles. Hence, the
bending energy is given by the formula

H = − 0.5o
ki j l

K cosu = − 0.5o
ki j l

1

3
Ksis js1 + 2zizjd, s5d

with the bending rigidityK. Here, the summationoki j l runs
over all possible nearest-neighbor pairsi-j around each hexa-
gon. (The overall factor 0.5 is intended to reconcile the
double counting.)

The above completes the transfer-matrix construction for
the discrete folding. The size of the matrix grows exponen-
tially in the form~16L with the system sizeL; the definition
of L is shown in Fig. 1(b). Apparently, it is an involving task
to diagonalize the matrix numerically; so far, the widthL
=6 has been achieved with the conventional full-
diagonalization scheme[26,28,29]. Moreover, the open
boundary condition must be imposed in order to release the
constraints from the boundaries; otherwise, the constraints
are too restrictive. The boundary effect deteriorates the data
so that the data acquire severe finite-size corrections. In the
following section, we propose an alternative diagonalization
scheme which enables us to treat large system sizes.

III. NUMERICAL SIMULATION ALGORITHM:
AN APPLICATION OF THE DENSITY-MATRIX

RENORMALIZATION GROUP TO THE
DISCRETE FOLDING

As is mentioned in the preceding section, the diagonaliza-
tion of the transfer matrix(1) is cumbersome because of its

overwhelming matrix size. Here, we propose an alternative
approach through resorting to the density-matrix renormal-
ization group[30–32]. The method allows us to treat large
system sizes. Our algorithm is standard, and we refer the
reader to the text[35] for technical details. In the following,
we outline the algorithm, placing an emphasis on the
changes specific to this problem. We will also present a pre-
liminary simulation result in order to demonstrate the perfor-
mance.

The basic idea of the density-matrix renormalization
group is simple. It is a sort of computer-aided real-space
decimation procedure with the truncation error far improved
compared with the previous ones. Sequential applications of
the procedure enable us to reach very long system sizes. One
operation of the real-space-decimation procedure is depicted
in Fig. 2. Through the decimation, the block states and the
adjacent spin variables(hexagon) are renormalized alto-
gether into new block states. The number of states for a
renormalized block is kept bounded withinm; the parameter
m sets the simulation precision. Suchm states are chosen
from the eigenstates with significant statistical weights(ei-
genvalues) hwaj of a (local) density matrix[35]; this is an
essential part of the density-matrix renormalization group
[30], and the name comes from this.

This is a good position to address a few remarks regarding
the changes specific to the present problem. First, in our
simulation, in order to reduce the truncation error of the real-
space decimation, we adopted the “finite-size method”[35].
We managed three sweeps at least, and confirmed that a good
convergence is achieved in the sense that the error is negli-
gible compared with the finite-size corrections. Secondly, we
have applied a magnetic fieldH of the strengthH=2 at an
end of the transfer-matrix strip. This trick was first utilized in
Ref. [29], and it aims to split off the degeneracy caused by
the trivial fourfold symmetryss= ±1,z= ±1d of the overall
membrane orientation.

We turn to a demonstration of the performance of the
scheme. In Fig. 3, we present the distribution of the statisti-
cal weightshwaj for the bending rigidityK=0.1, the number
of states kept for a blockm=15, and the system sizeL=14.
We see that the statistical weight drops very rapidly. In fact,
the 15th state exhibits very tiny statistical weightw15<3

FIG. 2. Schematic drawing of the density-
matrix renormalization-group(DMRG) proce-
dure. From the drawing, we see that through one
operation of DMRG, a “block” and the adjacent
sites(hexagon) are renormalized altogether into a
new renormalized “block.” At this time, the num-
ber of block states is retained withinm; see text.
In this manner, we can diagonalize a large-scale
transfer matrix through successive applications of
DMRG.
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310−4. Hence, only 15 significant bases, for instance, are
sufficient to attain a precision of,3310−4; note that the
statistical weight of the discarded states, namelywa sa.md,
indicates an amount of the truncation error. In our simula-
tion, we maintain, at most,m=20 bases for a renormalized
block, and thus our simulation result is “exact” in a practical
sense. Of course, there are finite-size corrections that are
severer than the truncation error, and they are to be consid-
ered separately.

IV. NUMERICAL RESULTS

In this section, we present the numerical results. We first
survey overall features for a wide range of the bending rigid-
ity K. Guided by the findings, we perform large-scale simu-
lations, aiming to investigate the crumpling transition and the
folding entropy.

A. Preliminary survey and technical remarks

In Fig. 4, we plotted the internal energyE and the free
energyF for a wide range of the bending rigidityK. Both E
and F are normalized so as to represent the one-unit-cell
quantities. In order to evaluateF reliably, we carried out a
trick, which we explain afterward. Technical information on
the simulation parameters is listed in the figure caption.
From the figure, we see a clear signature of an onset of the
crumpling transition at aroundKc,0.2. To be specific, we
see an abrupt change of the internal energyE, and the dis-
continuity is pronounced as the system sizeL is enlarged.
This tendency suggests that the singularity belongs to the
first-order transition. Such a tendency was observed in the
preceding full-diagonalization calculation study forLø6
[28]. Such a discontinuous crumpling transition was pre-
dicted by the cluster-variation analysis as well[27], and we

pursue this issue further in the next subsection. In the inset,
we have plotted the entropy per unit cellS. From the plot, we
see that a large amount of entropy is released at the transition
point. This fact shows that the membrane is flattened macro-
scopically in the large-K regime(flat phase). As a matter of
fact, it is to be noted that the entropy vanishes in the flat
phase; that is, the membrane undulations are frozen up
completely withstanding the thermal disturbances. In fact,
the internal energy is well fitted by the formulaE
=−0.5Ks3 cos 0d=−3K /2; see the dotted line in Fig. 4. This
fact again shows that the surface normals of all plaquettes are
parallel to each othersu=0d. This feature is quite reminiscent
of the planar folding[24]; see the Introduction. In this three-
dimensional case as well, the membrane is flattened com-
pletely in the large-K phase. In the present case, however, the
entropy release may be smeared out to some extent by the
enlargement of the embedding space dimensions. This issue
is also explored in the next subsection.

In the following, let us mention some technical remarks.
First, we explain a trick to evaluate the free energyF. Al-
though the internal energyE is calculated straightforwardly,
the calculation ofF requires some care. As is well known,
the total strip free energy is calculated with the transfer-
matrix diagonalization directly. However, because of the
presence of the boundaries, the data are deteriorated by the
boundary effect.(On the other hand, the presence of bound-
aries is vital to the numerical calculation; see Sec. II.) More-
over, through sequential applications of the normalization,
the total “width” of the strip becomes obscure. In fact, the
degrees of freedom processed in the early stages of normal-
ization would be truncated out by the succeeding renormal-
izations. In that sense, we should place a stress upon the
middle of the transfer-matrix strip, namely the middle hexa-
gon in Fig. 2. The middle hexagon retains the full degrees of
freedom(yet to be renormalized), and the boundary effect is

FIG. 3. Distribution of the eigenvalues(statistical weights) hwaj
(a, integer index) of the (local) density matrix[30–32] is shown.
The simulation parameters are chosen from the bending rigidityK
=0.1, the number of states kept for a blockm=15, and the system
size L=14. We see thatwa drops very rapidly for largea. For
instance, the states up to onlya=15 cover the relevant(significant)
bases with appreciable statistical weightswa.3310−4; the dis-
carded weightssa.md indicate an amount of the truncation error.
In this manner, onlym selected(relevant) bases are retained for a
renormalized “block” as is shown in Fig. 2.

FIG. 4. We plotted the free energyF as well as the internal
energyE for the bending rigidityK. The simulation parameters for
each symbol ares+dL=5 andm=5, s3dL=6 andm=5, andspdL
=7 andm=5. We see an abrupt change of the internal energyE,
which may indicate an onset of the crumpling transition. The dotted
line denotes the relation −3K /2 which describes the elastic energy
for a completely stretched membrane. Inset: EntropyS is plotted for
the bending rigidityK. In the large-K phase, the entropy appears to
vanish. This result, again, indicates that the membrane is stretched
completely in the flat phase.
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less influential. In order to extract the contribution from the
middle part, we managed a subtraction for those free ener-
gies with different strip widths depicted in Figs. 2 and 5. The
free-energy difference yields the bulk free energy containing
three unit cells. This trick is of particular importance in the
succeeding subsections, where we perform numerous renor-
malizations.

Second, as was first noticed in Ref.[36], the density-
matrix renormalization-group data exhibit a hysteresis effect.
The hysteresis is due to the fact that the past information is
encoded in the renormalized block. In the simulation pre-
sented in Fig. 4, we have softened the bending rigidityK
gradually. In this way, we succeeded in stabilizing the flat
phase.(Otherwise, one may not be able to realize the flat
phase. Because the flat phase is quite peculiar in the sense
that it bears zero entropy, it is very hard to reach such a state
by annealing from the crumpled phase.) In the next section,
we will stabilize the crumpling phase instead, because we are
concerned with the crumpled state and the undulation precur-
sory of the transition point.

B. Crumpling transition

In this subsection, we perform large-scale simulations,
aiming to clarify the nature of the crumpling transition. In
Fig. 6, we plotted the “excess” free energyF+3/2K in the
vicinity of the transition point. The technical parameters are

summarized in the figure caption. As is found in the preced-
ing subsection, the excess free energy should vanish at the
crumpling transition point, because the free energy in the flat
phase obeys the formula −3K /2. In other words, in the plot,
we are just comparing the free energies beside the transition
point. Moreover, from the figure, we observe that the slope
of the excess free energy is finite at the transition point.
Hence, the crumpling transition is indeed discontinuous.

From the figure, we see that good convergence is
achieved with respect to bothL (system size) andm (number
of retained bases for a renormalized block). In fact, the data
almost overlap each other for the parameters ofmù15 and
Lù19. Hence, we estimate the transition point asKc
=0.195s2d. Our simulation result shows that the previous
cluster-variation estimateKc=0.185 48 is remarkably pre-
cise.

Let us mention a technical remark. As is mentioned in the
above subsection, the density-matrix renormalization group
exhibits a hysteresis effect. Hence, upon increasing the bend-
ing rigidity gradually, we are able to retain the crumpling
phase. Taking advantage of those features rather specific to
this particular problem and the methodology, we are able to
determine the crumpling transition very precisely in terms of
the excess free energy.

As mentioned above, our data depicted in Fig. 6 suggest
that the crumpling transition is discontinuous. In order to
estimate the amount of the latent heat, in Fig. 7 we plotted
the entropyS in close vicinity of the transition point.(The
technical parameters are the same as those of Fig. 6.) Note
that the entropy at the transition point yields the latent heat,
because whole entropy is released at the crumpling transi-
tion. (Again, owing to the hysteresis effect, the crumpling
phase is kept stabilized throughout the parameter range
shown in the figure.) In this way, we estimate the latent heat
asQ=TDS=0.365s5d.

Our first-principles estimate of the latent heat may be in-
triguing. First, the present estimate appears to be substan-
tially larger than that of the cluster-variation studyQCV,3d
=0.229s=0.185 4831.237d [27]. [Here, the contribution
1.237 comes from a “jump in the energy-like correlation
function” [27]. Hence, multiplying it by the bending-rigidity
modulusKc=0.185 48, we obtain the latent heat; see the for-

FIG. 5. From the free-energy subtraction for those transfer-
matrix strips shown in the above and Fig. 2, we extracted the bulk
contribution to the free energy corresponding to the middle hexagon
of Fig. 2 (containing three unit cells).

FIG. 6. “Excess” free energyF+3K /2 is plotted for the bending
rigidity K. The simulation parameters for each symbol ares+dL
=19 andm=15, s3dL=24 andm=20, spdL=24 andm=15, shdL
=29 andm=15, sjdL=24 andm=5, andssdL=14 andm=15. The
term −3K /2 comes from the known exact free energy for the flat
phase. Hence, at the crumpling transition point, the excess free
energy should cancel out. In this way, we obtain an estimate for the
transition point asKc=0.195s2d. (Because of the hysteresis effect
[36], the crumpled phase is kept stabilized throughout the parameter
range shown above.)

FIG. 7. EntropyS is plotted for the bending rigidityK. The
entropy right at the phase transition pointKc=0.195s2d yields the
latent heatQ=0.365s5d; see text. The simulation parameters are the
same as those of Fig. 6.(Because of the hysteresis effect[36], the
crumpled phase is kept stabilized throughout the parameter range
shown above.)
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mula for the bending energy(5).] As a matter of fact, our
data of Fig. 7 indicate that the entropy is kept almost un-
changed even in the vicinity of the transition point. This fact
tells us that the phase transition occurs abruptly without any
precursor.[Almost all “folding entropy” SsK=0d, which is
calculated in the next subsection, is released at the transition
point actually.] We think that the constraints, Eqs.(2) and
(3), give rise to such a notable suppression of the undulation
precursory of the crumpling transition. In this sense, it is
suspected that the constraints are not fully appreciated by the
single-hexagon-cluster approximation in the preceding work.
Second, nevertheless, it is still counterintuitive that the latent
heat is even larger than that of the planar foldingQCV,2d
=0.11s=0.101331.047d obtained by the cluster-variation
method[25,27]. Naively, one would expect that the latent-
heat release is smeared out by the enlargement of the embed-
ding spatial dimensions. Contrary to such a naive expecta-
tion, our data indicate that the discontinuous nature of the
transition is enhanced by the enlargement of the embedding
spatial dimensions. The tendency observed in our simulation
data supports the claim that the crumpling transition is dis-
continuous[20,21].

C. Folding entropy

In this subsection, we calculate the folding entropy,
namely the entropy in the absence of the bending rigidity
sK=0d. This quantity has a close connection with mathemat-
ics; in the absence of the elastic term, the thermodynamics
reduces to a pure entropic problem regarding the assessment
of the volume in the configuration space. Hence, a combina-
torics argument applies. As a matter of fact, in the case of the
planar folding, the folding entropyS2d is obtained exactly in
the context of the coloring problem[23,37,38], namelyS2d
=ln q2d with q2d=Î3pGs1/3d3/2/2=1.208 72. As for the
three-dimensional discrete folding, an exact bound 1.436
øq3dø1.589 has been known[26], namely 0.361øS
ø0.463. [We see that the effective degrees of freedom per
unit cell are reduced considerably owing to the constraints
(2) and (3).] Both cluster variationq=1.428 05[27,29] and
numerical estimatesq=1.43s1d [26] lie slightly out of the
analytic bound. It may be thus desirable to make an assess-
ment of the folding entropy with the present first-principles
simulation scheme.

In Fig. 8, we plotted the entropyS at K=0 against 1/L2.
The simulation parameters are summarized in the figure cap-
tion. From the figure, we see that a good convergence is
achieved with respect to bothL andm. Thereby, we estimate
the folding entropy in the thermodynamics limit asS
=0.378s2d. Our estimate lies within the aforementioned ana-
lytic bound actually. Remarkably enough, it is close to the
lower bound(4% error), suggesting that the argument[26]
setting the lower bound is indeed capturing the essential
mechanism for the folding entropy.

V. SUMMARY AND DISCUSSIONS

We have investigated the three-dimensional discrete fold-
ing by means of the density-matrix renormalization group.

The method allows us to treat large system sizes. In fact, we
succeeded in diagonalizing the transfer matrix with the strip
widths up toL=29. The system sizes treated in the present
study are far improved, compared to the past limitation of
L=6. Taking the advantage, we could take reliable extrapo-
lations to the thermodynamic limit; see Fig. 8, for instance.
Moreover, from the figure, we confirm that the
(renormalization-group) truncation error is fairly negligible,
,10−4. Actually, the truncation error is far smaller than the
finite-size corrections, and it is controlled systematically by
the parameterm; see Fig. 3 as well.

Encouraged by these achievements, we turned to the
analyses of the crumpling transition and the folding entropy.
Here, we also aimed to examine the preceding analytical
treatment[29] based on the cluster-variation approximation;
the approximation has been known to be reliable in the case
of the planar folding[25], whereas it remained unclear
whether it is validated for the three-dimensional folding. Per-
forming large-scale simulations, we estimated the crumpling
transition point Kc=0.195s2d and the latent heatQ
=0.365s5d; see Figs. 6 and 7. ConcerningKc, the numerical
result is in good agreement with the cluster-variation esti-
mateKc=0.185 48. As for the latent heat, however, our simu-
lation result appears to be substantially larger than the pre-
diction by the cluster-variation methodQCV,3d=0.229. Our
first-principles data suggest that the constraints, Eqs.(2) and
(3), were not fully appreciated by the(single-hexagon clus-
ter) approximation in the preceding study. Namely, in reality,
the undulation precursory of the crumpling transition is sup-
pressed considerably by the constraints. As a matter of fact,
the latent heat in the three-dimensional folding is even larger
than that of the planar folding, as first noted by the cluster-
variation study[27]. This fact might be quite counterintui-
tive, because one expects that the entropy release should be
smeared out by the embedding-space enlargement. Our first-
principles simulation shows that such a naive expectation
does not hold, and in reality, the discontinuous nature of the
crumpling transition is even promoted by the embedding-

FIG. 8. Folding entropySsK=0d is plotted for 1/L2. The simu-
lation parameter for each symbol iss+dm=10, s3dm=15, and
spdm=20. Taking an extrapolation to the thermodynamic limitL
→`, we obtain an estimateS=0.378s2d. Our estimate lies within
the best analytic bound[26]; see text.

YOSHIHIRO NISHIYAMA PHYSICAL REVIEW E 70, 016101(2004)

016101-6



space enlargement.[Actually, almost all folding entropy
SsK=0d is released abruptly at the transition point.] In this
sense, the tendency observed in our simulation data supports
the claim that the crumpling transition is discontinuous
[20,21].

Let us turn to addressing the entropy in the absence of the
bending rigidityK=0. This quantity is often referred to as
the folding entropy, and it has a close connection with a
combinatorics problem in mathematics[23,37,38]; note that
because ofK=0, the thermodynamics is governed solely by
the entropy(configuration-space volume). In Ref. [26], an
analytic bound 0.361øSø0.463 was derived via ingenious
combinatorics arguments. The preceding results[27,29] are,
however, slightly out of this bound. We performed extensive
simulation for the folding entropy with the elastic constant
switched off; see Fig. 8. Thereby, we estimated the folding
entropy asS=0.378s2d. It lies within the best analytic bound,
and actually, it is almost overlapping the lower bound(4%

error). Hence, it is suggested that the analytical argument
leading to this lower bound is capturing the essence of the
folding mechanism.

Our first-principles simulation reveals that the discontinu-
ous character of the transition is promoted by the enlarge-
ment of the embedding-space dimensions. Possibly, the con-
straints, Eqs.(2) and (3), give rise to such a notable
discontinuity. Hence, it would be of considerable interest to
release the constraint somehow, and see how the nature of
the transition changes. The constraint release, however, re-
sults in a severe increase of the nonzero elements of the
transfer matrix, and is thus computationally demanding. This
problem will be addressed in future study.
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